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Abstract. This paper presents a new approach to the sufficient conditions of nonlinear programming. 
Main result is a sufficient condition for the global optimality of a Kuhn-Tucker point. This condition 
can be verified constructively, using a novel convexity test based on interval analysis, and is guaranteed 
to prove global optimality of strong local minimizers for sufficiently narrow bounds. Hence it is 
expected to be a useful tool within branch and bound algorithms for global optimization. 
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In this note we consider smooth nonlinear programs of the form 

min f(z) 
s.t. u<x<v, F(x) = 0, 

where u, v E IRn(u < v) define the box 

(1) 

with nonempty interior, and f : [u, v] -+ IR, F : [u, v] -+ IRr are continuously 
differentiable. 

Here (as always in the following) all inequalities involving vectors are interpret- 
ed componentwise. We shall allow some of the bounds to be infinite, ztk = -oo or 
vk = 00, to allow for one-sided bounds and unbounded variables; but in practice 
it is advisable to add sensible bounds to all variables. By the introduction of slack 
variables, arbitrary nonlinear programs can be written in this form. 

In the following, g = V f denotes the gradient of f . If K is a set of indices, zK 
denotes the subvector of a vector x obtained by discarding rows not indexed by K, 
A. K (or AK.) is the submatrix of a matrix A obtained by discarding columns (or 
rows) not indexed by K, and A KK is the square submatrix of a square matrix A 
obtained by discarding rows and columns not indexed by K. A.I, denotes the lath 
column of a matrix A. 

Section 1 gives our main result in Theorem 1.2, and some additional remarks. 
In Section 2 we show that the sufficient global optimality condition derived in 
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Theorem 1.2 is strong enough to deduce from it the standard second order sufficient 
conditions for local minimizers (Theorem 2.3) when the box constraint is narrowed 
to a small neighbourhood of a Kuhn-Tucker point. At the same time, our new proof 
of these conditions gives important hints for a constructively verifiable version of 
the global optimality condition that reduces the global optimality proof to one of 
verifying convexity of the generalized augmented Lagrangian. Section 3 shows 
that this can be done by means of interval analytic techniques. 

1. Global Optimality of Kuhn-ncker Points 

For the nonlinear program (l), the most general necessary conditions for optimality, 
the Karush-John conditions, can be formulated as follows. 

THEOREM 1.1. (First order optimality conditions for nonlinear programs with 
two-sided bounds). Let 2 E IR” be a solution of the nonlinear program (1) with 
u < v. Then there are multipliers K > 0 and 2 E IR’, not both zero, such that the 
vector 

6 := fig(k) - lqqT2 (2) 

satisjies the two-sided complementarity condition 

$k 2 0 if?k = uk , 
3k i 0 if2.k = Vk , 
ijk = 0 otherwise. 

Moreover; if the constraint qualification 

(3) 

rkF’(k).K” = T, where Ko = (k 1 Uk < 81, < vk} (4) 

(or one of a number of similar constraint qualifications) holds, we can take n = 1. 
Proof. This follows easily from the corresponding conditions in the standard 

form with general inequalities (Karush [5], John [4]) by eliminating the multipliers 
corresponding to the bound constraints. 0 

A feasible point z such that (2) and (3) hold for IE = 1 and suitable 2 is generally 
referred to as a Kuhn-Tucker point (after Kuhn & Tucker [6]), with associated 
Lagrange multiplier ,? (after Lagrange [7], Part II, Ch. XI, Sec. 58). Except for 
convex programs, the first order conditions are usually not sufficient for optimality, 
and Kuhn-Tucker points need not be local minima. 

However, we shall show that it is possible to modify the original objective 
function in such a way that convexity of the modification still provides optimality 
for the original problem. This modification can often be achieved locally, and 
suffices to derive a semilocal version of well-known sufficient conditions for local 
optimality. Here the adjective semilocal refers to the fact that the new sufficient 
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condition actually verifies not only local optimality but in fact global optimality 
within apre-specified local region around the local minimum. 

This fact allows our new condition to be employed as a natural stopping cri- 
terion guaranteeing finite termination in branch and bound algorithms for global 
constrained optimization, at least in the absence of degeneracy. Indeed, this can be 
achieved in a similar way as a more specialized sufficient condition for concave 
optimization is used in Horst & Tuy [2] (Theorem V.1). But algorithmic aspects 
will not be considered in the present paper. 

THEOREM 1.2. Let 2 be a Kuhn-Tuckerpointfor the nonlinearprogram (l), with 
associated multiplier 2, and let 

ij := g(Z) - F’(+, (51 

D =Diag (/z,...,/z) . (6) 

Ij for some continuously differentiable function ‘p : Rm + IR with 

p(O) = 0, q’(O) = ST, 

the generalized augmented Lagrangian 

L(x) :== f(z) - p(F(z)) + $l(z - 2)Il; 

(7) 

(8) 

is convex in [u, v], then B is a global solution of(l). Moreovel; if e(x) is strictly 
convex in [u, v], this solution is unique. 

Proof. Clearly, i(g) = f(Z) - v(O), and since 

L’(x) = g(c?y - p’(F(rc))F’(z) + (Lx - #l.FD 

we have 

L’(2) = g(iy - cp’(O)F’@) = g(ciy - ,PF’@) = GT. 

Therefore, for any LC E [u, v], convexity yields 

L(z) 2 i(2) + 2(2)(x - 2) = f(2) + g-(x - 2). 

If z is feasible then F(z) = 0, so that 

f(Z) =i(z)+Lp(O)-~llD(z-l)ll: L S(~)+gr(,-~)-~ll0(2-e)llf. (9) 

Since D is diagonal, this implies that 
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The complementarity condition together with the definition of D now implies that 
each term in the sum is nonnegative: If r& = 0 then Dkk = 0 and D&,.(zk: - 
q2 = 0 = 2&&k - 2.k). If jjk > 0 then gk = uk and D&(x~ - $k)2 2 
@I,bJk - ulc)(xck - ?k) = 26 k zk - 2.k). And if jjk < 0 then hk = 2rk and ( 
D$,(xl, - f/J2 = I$,( il, - x/J2 I Dj$ (Wk - “k) (2, - x/c) = 2[jj,) (& - x]c) = 
2& (2k - 5&). Therefore, (10) implies that f(z) > f(g) for all x E [u, V] with 
F(x) = 0. Thus, B is a global solution of (1). Uniqueness follows along the same 
line by observing that strict convexity excludes equality except for IC = 2. q 

REMARK 1.3. The same result holds if we use in place of (6) an arbitrary (not 
necessarily diagonal) matrix D with 

Ilo.kll; I%:/~ (k = L.44, (11) 

where 

a=sup{~~(s-2) (u,Iz+J,F(z)=O) 

(or any computable upper bound). Indeed, in this case (9) implies 

f(x) 2 f(i) + - : min { 2]jjjT s - Ilql; I s L 0, IBITs I 0)) (12) 

where s = ,X(x - ?),C = DC with C = Diag(sgn$t,. . .,sgn$,). But (11) 
implies that the minimum in (12) is zero, as a consequence of the following result 
(similar to Proposition 1 of Neumaier [9], used to derive sufficient conditions for 
global quadratic programs), applied for a = 2($(, b = ]$]/a: 

PROPOSITION 1.4. Let a, b E lRn be nonnegative, and suppose that C E lRmxn 
satis-es 

Ilc.kll; 5 akbk (k = 1,. . . ,n). 

Then 

IlCxll$ < aTx for all x 2 0 with bTx 5 1. (13) 

Proof. We may assume that all components bk are positive since the general case 
follows from this by continuity. The function f defined by f(x) := aTz - IlCxjl~ 
is concave, hence assumes its minimum over the simplex {x 2 0 1 b*x 5 l} at 
a vertex. Thus the minimum is either at x = 0 (where f = 0), or at a scaled unit 
vector x = b,’ etk) (where f = akbi’ - (fC,k(($b;2 2 0 by assumption). Thus 
f(x) > Oonth e simplex, giving the desired bound (13). 0 

2. Local Second Order Optimality Conditions 

To discuss second-order optimality conditions we shall assume for the following 
that f and F are twice continuously differentiable in the box [u, ~1. 
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For the simplest choice conforming with (7), namely cp(s) = ZTs, Theorem 1.2 
implies that i is a local solution of (1) if the Hessian 

e := L”(8) = f”(2) - c .sjjFjll@) (14) 

at 2 of the Lagrangian 

L(z) := f(z) - 2TF(x) (15) 

is positive definite. Indeed, if G = L”(2) is positive definite then so is i”(g) = 
L”(2) + DTD. Therefore J!,(X) is strictly convex in a neighborhood of H, and we 
can apply Theorem 1.2 in this neighborhood. Hence P is a local solution. 

However, the simple univariate example 

min --x2 s.t. - 1 5 z 5 1 

shows that, at a local solution, the Hessian of the Lagrangian need not even 
be positive semidefinite. Thus the definiteness condition on theAHessian is too 
restrictive; necessary conditions only provide semidefiniteness of G on a subspace: 

THEOREM 2.1. (Second order necessary optima& conditions for nonlinearpro- 
grams with two-sided bounds). Let 2 be a local solution of (1). and let 

JO = {k I2.k = uk or?k = 21k). (16) 

With the above notation, if the constraint qualijcation (4) is satisfied then the 
following, equivalent conditions hold: 

(i) F’(2)s = 0, SJ() = 0 =+ ST& 2 0. 
(ii) For some matrix (and hence all matrices) 20 whose columns form a basis 

of the subspace dejined by the left-hand side of(i), 2~6’20 is positive semidejinite. 
Proof. This is well-known but for the sake of completeness we give a short 

proof. 
(i) The constraint qualification (4) and the implicit function theorem imply that 

in a neighborhood of li, the manifold of solutions of F(z) = 0, XJ” = ?J, can be 
parametrized as {Z(S) 1 s E S}, where 

s = {s E lRn 1 F’@)s = 0, 5-4, = O}, 

in such a way that z(s) = 2 + s + o(11sjj). H ence, for sufficiently small s E S, 
we have 0 I f(z(s)) - f(g) = L(z(s)) - L(i) = L’(~)(z(s) - 2) + i(z(s) - 
?)TL”(&)(~(~) - 2) + o((11s1j2) = sTG:s + o((~~s~~~). If we now replace s by ES, 
divide by c2, and take the limit E + 0, we arrive at sTGs 2 0. 

(i) ti (ii): If (i) holds then s = Zcp satisfies the hypothesis of (i) so that 
0 I sTGs = pTZr&‘Z~p. Thus ZrGZu is positive semidefinite, and (ii) holds. 
Conversely, any s satisfying the hypothesis of(i) can be written as s := Zep. Hence, 
if Z~G’zo is positive semidefinite, sTGs = pTZ~GZop 2 0, and (i) holds. •I 
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REMARKS 2.2. (i) Generally, the Hessian of the Lagrangian agrees with the Hes- 
sian of the objective function only when all constraints are linear (F,“(z) = 0). 
Thus the curvature of the constraints enters the second order conditions in an 
essential way. 

(ii) A slightly more careful argument shows that one can strengthen the necessary 
condition in Theorem 2.1(i) to 

(i’) If F”(?).s = 0 and 

then sTG:s 2 0. 
However, this condition is much more difficult to check, and is the reason that 

deciding local optimality (in the absense of strict complementarity) is NP-hard (cf. 
Pardalos & Schnitger [lo] and the recent book by Horst et al. [3]). 

We show now that, with a more sophisticated choice of tp, we can get sufficient 
optimality conditions where -as in the unconstrained case- the gap to the necessary 
conditions is only slight. Of course, these sufficient conditions can also be derived 
from the traditional sufficient conditions for problems with arbitrary equality and 
inequality constraints, see e.g., Fletcher [l], Section 9.3. The present proof is given 
to show that the new global sufficient condition is indeed strong enough to imply 
the local result. Moreover, details in the proof are needed in Section 3 to motivate 
a constructively verifiable version of the global optimality condition. 

THEOREM 2.3. (Second order sufficient optima& conditions for nonlinear pro- 
grams with two-sided bounds). With the above notation, let 

J = {k 1 ek # o}, K = {k 1 $?jk = O}. 

A s@icient condition for a local minimizer is that any of the following, equivalent 
conditions holds: 

(i) F’(?)s = 0, s~=O=+s~&s>O ors=O. 
(ii) For some matrix (and hence all matrices) Z whose columns form a basis of 

the subspace defined by the left-hand side of(i), ZTC?Z is positive definite. 
(iii) For some matrix (and hence all matrices) A whose rows form a basis of 

the row space of F’ (2). K, 

&:KK + ,t3AT A is positive definite for some /3 1 0. (17) 

A Kuhn-Tucker point satisfying the above sufficient conditions for optimality is 
called a strong local minimizer of (1). Both matrices ZTGZ and ZFG.Z’o are 
referred to as reduced Hessians of the Lagrangian. 
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If we compare with (16) and (4) we see that J c Jo and K 2 KO by the 
complementarity condition (3), hence the condition in Theorem 2.3(i) is a little 
more restrictive than that in Theorem 2.1 (i). However, in practice we usually have 
strict complementarity, i.e., the condition J = JO (equivalently K = Ko) holds at 
least for some choice of the multiplier vector 2, and then the difference between 
Theorem 2.1(i) and Theorem 2.3(i) is only marginal. 

Proof. We first prove that (iii) implies local optimality. The construction of A 
implies that there is a matrix B such that A = BF’(2) .K. If we define 

then the generalized augmented Lagrangian (8) satisfies 

i”(2) = H + DTD, (19) 

where H = & + PF’(P)TBTBF’(P). By assumption, the matrix HKK = &:KK + 
,f?ATA is positive definite. Since, for uk, WI, sufficiently close to &, the diagonal 
entries Dik (k E J) b ecome arbitrarily large by (6), we conclude from (19) and 
continuity that i”(z) is positive definite in every sufficiently narrow box around 
?k. Local optimality therefore follows from Theorem 1.2. It remains to prove the 
equivalence of (i) - (iii). 

(iii) + (i): If (17) holds then the hypothesis of (i) implies ASK = 0, hence 
sT&‘s = sg($~~.s~ = s$(&:KK +/3ATA)s~ > Ounless s = 0. Thus (i) is valid. 

(i) + (ii): If (i) holds then p # 0 implies s := Zp # 0, hence 0 < sT&s = 
pTZTc.Zp. Thus ZTeZ is positive definite, and (ii) holds. 

(ii) + (iii): Since the rows of A are linearly independent we can find a matrix 
P such that AP = 1. If (ii) holds, the Cholesky factorization LLT of .ZTeZ 
produces a nonsingular L, and we may define the matrices 

N := &ZL-T, 

M := PT(& - NNT)KKP, 

Now let z E lRn be arbitrary and w := AXK. The vector s with SJ = 0 and 
SK := XK - Pw satisfies ASK = w - APw = 0 and hence the hypothesis of(i). 
Hence s = Zp for some p, and we find 

X~&KKXK = (SK + Pw)~G’KK(sK + Pw) 

= $$KKSK + 2(PW)T&~~S~ + (Pw)~GKKPw. (20) 

Using 

S$@KK.SK = ST&S = pTzT&zp = pTLTLp 
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and 

eKKsK = eK.s = eK.Zp = NK.LTp, 

we can rewrite (20) as 

z;&yjyx;~ = pTLTLp + GINA. LTp + (Pw)~~&Pw 

= IILTp + N;. Pwll; + wTMw. (21) 

If p is larger than the spectral radius of M (or only of the negative of its smallest 
eigenvalue) we can deduce that 

&(&K + DATA) XK = X~@KKXK + pWTW 

= ))LTp + N:. Pwll; + wT(M + pI)w > o. 

Equality is possible only when w = 0 and the norm vanishes, leading to LTp = 
0, p = 0, s = Zp = 0 and hence to ZK = 0. This shows that GKK + PATA is 
positive definite. cl 

3. Verifiable Sufficient Conditions for Global Optimality 

In the previous section we showed that, in principle, Theorem 1.2 can be used 
to verify global optimality in any sufficiently narrow box around a Kuhn-Tucker 
point satisfying the local second-order sufficient conditions. Within a branch and 
bound framework, this ensures that no infinitely fine subdivision is needed near the 
global optimizer, thus removing a serious problem from current branch and bound 
implementations. 

However, to be useful for algorithmic applications, all steps in the verification 
process must be made fully constructive. Standard algorithms for local optimization 
generally provide, together with a Kuhn-Tucker point, also an associated Lagrange 
multiplier. Second order methods often provide a basis Z of the relevant null space, 
too, and a Cholesky factor of the reduced Hessian of the Lagrangian at P. 

To verify the hypothesis of Theorem 1.2, we must first choose a suitable func- 
tional cp. The proof of Theorem 2.3 shows that (18) is a sufficiently general choice. 
Since A is most easily produced as a submatrix of F’(z) .K, B in (18) will be a 
monomial matrix, with exactly one nonzero per row. A suitable value for ,6 can be 
found by calculating the smallest eigenvalue of the matrix M defined in the proof. 
The construction of M given in the proof only uses simple linear algebra; the right 
inverse P of A needed is typically available implicitly through the factorization 
which also provides Z; explicit Z and P are not needed when the computation is 
suitably arranged. 

This leaves the convexity check of the generalized augmented Lagrangian as the 
only nontrivial part of the global optimality verification procedure. And indeed, this 



SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS 149 

causes some problems, since (P(Z) as given by (18) is concave so that convex and 
concave parts in (8) may partially cancel. A general method for checking convexity 
of arbitrary C’ functions in a box using finitely many function values is impossible 
since convexity over a given box is no longer a local property. Therefore we can 
only hope to get a working method by restricting the kind of objective functions 
and constraints admitted. 

For quadratic programs, the generalized augmented Lagrangian is a quadratic 
function, and convexity is simply checked by attempting acholesky factorization of 
its Hessian. (This gives a much simpler sufficient condition than my previous result 
in [9].) For nonquadratic programs, we must use more sophisticated techniques. 

It turns out that a useful black box convexity check is possible with methods of 
interval analysis, at least in the case where all nonlinearities are given by arithmetic 
expressions and the boxes are not too wide. The basic paradigm is that with 
interval arithmetic and automatic differentiation, it is possible to calculate intervals 
containing the ranges of a function and its partial derivatives when the argument 
ranges over a box. The computed intervals usually overestimate the precise ranges; 
however, under very mild conditions on the form of the expressions, the width of 
the computed interval is of the order O(r) when the width of all components of the 
box is of order O(r). See, e.g., Neumaier [8], where the relevant background can 
be found. 

In particular, if G is a matrix of intervals (usually simply called an interval 
matrix), calculated as an enclosure of i”(z) for z E [u, v], then, with T = max{vk - 
uk 1 k = I,... , n}, we generally have 

IG - e:( = O(T). 

Such a statement implies a corresponding statement for all individual matrices 
C E G, with absolute values taken component-wise. In particular, if C is positive 
definite then all matrices in G are definite, too, provided the underlying box is not 
too wide. This was precisely the kind of argument used in the proof of Theorem 
2.3, and it shows that the information provided by interval analysis is precisely 
what is needed to make the present results fully constructive. 

The only task remaining is to give a constructive criterion for simultaneously 
checking the definiteness of all members of an interval matrix. We give just one 
such result, showing that it can be done; various refinements are possible, using 
more of the machinery of interval analysis. However, since the methods are so 
different, details will be discussed elsewhere. 

THEOREM 3.1. (Suficient conditions for convexity). Let f : [u, w] + IEX be twice 
continuously differentiable on the compact box [u, v], and suppose that G is a 
symmetric interval matrix such that 

f”(z) E G for all z E [u,zl]. (22) 
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(i) If some symmetric matrix Go E G is positive dejnite and all symmetric matrices 
in G are nonsingular then they are all positive dejkite, and f is uniformly convex 
in [u, v]. 

(ii) In particular; this holds if the midpoint matrix 

e = (sup G + inf G)/2 

is positive definite with inverse C, and the preconditioned radius matrix 

A = (CJradG, 

where 

rad G = (sup G - inf G)/2, 

satisfies the condition 

IlAll -=c 1 
(in an arbitrary norm). 

(23) 

Proof. (i) Since the eigenvalues are continuous functions of the matrix entries 
and the product of the eigenvalues (the determinant) cannot vanish, no eigenvalue 
changes sign. Hence the eigenvalues of all matrices in G are positive, since this 
is the case for the positive definite member. Thus all matrices in G are positive 
definite. By well-known results, uniform convexity off now follows from (22). 

(ii) Go = C belongs to G, and condition (23) implies strong regularity of the 
interval matrix G ([8], Section 4.1) and hence nonsingularity of all matrices in G. 
Thus (i) applies. 0 

REMARK 3.2. In many cases, the Hessian of the augmented Lagrangian can be 
shown to have the form 

f”(z) = xzl+4i with u; E ui, 

for suitable constructively available real matrices Ai and intervals ui. In this case, 
the above result can be strengthened (with virtually the same proof) by replacing 
&’ and A with 

c$ = xti,:Ai 

and 

A’ = xradu;JCA;I, 

respectively, where 

ii= (supu+infu)/2 

and 

rad u = (sup u - inf u)/2. 

Indeed, it is not difficult to see that for G = C ui Ai, we always have 0 I A’ 5 1 Al, 
so that the refined test is easier to satisfy. 
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By applying this convexity test to the generalized augmented Lagrangian in place 
of f, we have a criterion which verifies the convexity of L(z) for z E [u, w] in 
arbitrary sufficiently narrow boxes [u, V] around a strong local minimizer 2, and 
thus proves that 2 is the unique global minimizer within such a box. 

As an aid for an actual implementation, we add a few final remarks. The Hessian 
of the generalized augmented Lagrangian is 

G(s) = i”(z) = f”(z) - c cp’(Fj(z))Fjll(z) + PF’(z)~B~BF’(z) + D%, 

and reduces to the expression for H given after (19) when z = 2. Thus the 
interval evaluation G : = G( [u, v]) g’ Ives an interval matrix satisfying (22) with t 
in place of f. Alternative forms for t”(z) seem to suffer from a higher degree of 
overestimation when intervals are inserted. 

We construct an appropriate function cp (F ( 3: ) ) using (18). Actually, many matrix 
I3 will do and define a corresponding A as in the line before (18), but there may 
be better and worse choices. The assumption in (iii) allows quite a lot of freedom 
in the choice of A. The natural choice is to use Gaussian elimination with partial 
pivoting (perhaps after equilibration) to select a subset of rows of F’. In this case, 
B is simply a (0, 1)-projection matrix that picks these rows. ,f3 must just be chosen 
such that (17) holds; and the line after (21) shows how to construct it explicitly. 
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